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36 E. Braun 

1. I N T R O D U C T I O N  

In two earlierpapers (1'2~ (hereafter referred to as I and II; here we use the 
same notation as in these papers) we started the study of nonequilibrium 
statistical mechanics of systems interacting with nonadditive forces. In paper I 
we obtained the hydrodynamic equations for these systems and the explicit 
expressions for the contribution due to nonadditive forces to the stress tensor 
and the heat current. In paper II we set up the general kinetic equation using 
Bogolyubov's functiona! assumption. Furthermore, after linearizing in the 
gradients we solved this equation using a Chapman-Enskog method, and 
finally obtained the explicit expressions for the shear and bulk viscosities and 
thermal conductivity. It should be mentioned that all the results obtained in II 
were obtained without using series expansions in the density of the relevant 
quantities. 

It is the purpose of this paper to discuss the density expansion of the 
transport coefficients, and obtain the explicit effect of the nonadditivity of the 
intermolecular potential on the triple collision part of these quantities. 
Therefore we restrict ourselves in this paper to quantities up to first order in 
the density. 

In Section 2 we solve the generalization of the BBGKY hierarchy for 
systems with nonadditive forces obtained in paper II, as a power series in the 
density. We use, for this purpose, the ideas on the boundary conditions 
discussed elsewhere (Ref. 3; hereafter referred to as III). We also demonstrate 
in this section the fact that in our one-component system no diffusion 
is present. As was mentioned in Appendix B of II, we can only prove 
this by making density expansions of the two- and three-body distribution 
functions. 

In Section 3 we find the explicit expressions for the transport coefficients. 
To zeroth order in the density the nonadditive potentials do not play any 
role, and we recover the usual Boltzmann results. To first order in the density 
we find that the transport coefficients consist of two parts; the contribution 
of the additive part of the potential, obtained in another paper (Ref. 4; 
hereafter referred to as IV), and an explicit contribution due to nonadditive 
forces. 

2. THE  T W O - B O D Y  D I S T R I B U T I O N  F U N C T I O N  

In this section we proceed to obtain from the generalization of the 
BBGKY hierarchy to systems that-interact with nonadditive forces the two- 
body distribution function up to first order in the density. 

The generalized BBGKY hierarchy was obtained in paper II and can be 
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written in terms of the reduced distribution functions in phase space F~ as 

(</o,) + ~ n  = 2 ~ f d~,+1 Evo,~,.,+11.V,,F,+, 
/ ( := i  

where 

, f  
lc=1 

s = 1, 2,... (1) 

8, = 2 (p,/m).V~,,-  ~ ' ~  [V,,~,j].V~,, 
/ i;=1 k ~ j  

- �89 2 2 2 [Vq, w''z]'V', - ~ + A, (2) 
k r  

Here ~ is the additive hamiltonian operator given in Eq. (4) of III, and 
As is the nonadditive part of !3s. Furthermore, we have taken the thermo- 
dynamic limit (N-+oo, V--->oo, N / F =  n, finite). Equation (1) can be 
rewritten in a more convenient form as follows: 

(</or) + o , n  = 2" f dx,+, o , , ,+ ,n+ l  
k : = l  

where 

and 

/cr 

' y  + k~=l n 2 dx,+l d&+2 ~k,~+l,~+2F~+2, s = 1, 2 .... (3) 

(4) 

~j~ = [Vqkw~j, ].vpk + [Vqjw~j,].vqj + [Vq,. w~jz]. Vo, (5) 

In particular, for s = 1 we find that 

(SFz/St) + (p/m).VqF~ = n f dxz O~2Fe(xl, x2; t) 

+ nZf dx2 dxa ~12aFa(xl, x2, xa; t) (6) 

Here we have set x = xl .  
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As we have done in II, we now make Bogolyubov's functional assump- 
tion, namely that the distribution functions of more than one particle are 
time-independent functionals of the one-particle distribution function 

Fs(xl .... , x~; t) = F~(xl ..... x~lF~(x; t)), s >/ 2 (7) 

This assumption is only valid in the kinetic stage of the evolution of the 
system toward its equilibrium state. Substitution Eq. (7) into Eq. (6), one 
obtains the kinetic equation in the form 

8F1/St = B(xIFD (8) 

We now expand B and F~ in a power series in the density n, 

FX'"W1) = ~ n.%"~('"W1) 
I = 0  

and 

(9) 

B(x]F0 -- ~ nZBz(x]F1) (10) 
l = 0  

Substituting Eq. (9) into Eq. (6) and Eq. (10) into Eq. (8) and comparing 

(lla) 

(1 lb) 

the coefficients of the same powers in the density, we obtain 

Bo = -(p/m). VqF1 

B1 = f dx2 012F2 (~ 

B2 = f dx2 012F2(1) + f dx2 dxa ~12aFa (~ ( l lc)  

Bl ~- f dx2 012F2(l-1) q- f dx2 dxa ~123Fa (l-2), 1>>.2 ( l ld)  

If  we now substitute Eq. (9) into the hierarchy, Eq. (3), and separate different 
orders in the density, we find that 

NoFs (~ + ~sF~ (~ = 0 (12a) 
8 

N~ + @"F~(1) -NiFs(~ + u~iJ dxs+l a ~(o) vk ,S+  l~t S + 1  
= 

+ � 8 9  dx~+lr ~.(o) q3m (12b, '.~k,],S+IL 8+1  ~ 

~~ + O'F~(Z) = -,--~1 ~rF~(Z-') + = dx,+l O~,,+lF}l+~ 1) 

+ �89 ~ i ~  f dx'+' r ~('-" ~/r  x 8+ 1 

+ 2 f dxs+l dxs+z rb/c.sq- 1,S+ 2 E a - 2 ) - - q 3 8 ( ~  
k = l  
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Here we have defined the operator N~ as 

= (13) 

where (3r denotes the functional derivative of r with respect to/7t,  and 
Bk is given by Eqs. ( l la) - ( l ld) .  

Equations (12a)-(12c) are the differential equations satisfied by F, (z). The 
solution is obtained in the same way as is done in the case of systems with 
purely additive forces. (3'5) We shall only write down the solutions. From Eq. 
(12a) one finds that 

"'" I & )  = (14a) 

and in general from Eq. (12c) 

FJ')(...IF1) = ~-~F~(~'(...I~F~) + dr ~-'~3,(~)(...I~I'F~), 1 t> 1 (14b) 

Here we have introduced the streaming operator of s particles as 

~/(xl , . . . ,  x~) = exp{~-0/xl ..... x~)} (15) 

with s3~ given by Eq. (2). 
We now proceed to consider the right-hand sides of Eqs. (14a) and (14b) 

in the usual way. (8,5) Due to the fact that the left-hand sides of Eqs. (14a) and 
(14b) do not depend on % the right-hand sides do not depend on ~- either. 
Therefore we can take r ~ oo in Eqs. (14a) and (14b). At this point we 
introduce, following the ideas advanced in III, the following boundary 
conditions: 

8 

lira ~-'F,(~ ) = (1 - ffjo)) lim ~ - ~  ~ ~l~(x,)F~(xO (16a) 

and 

lira ~-*F~(Z)(...I~'F~) = g(z) lim ~ - *  l'z-[ ~*(x,)F~(x,), l >I 1 (16b) 

Here we have introduced the s-body local equilibrium correlation func- 
tion g~, given by its series expansion 

~ = ~ nZ~ (z) (17) 
/ = 0  

As was done in III, we take the local equilibrium value of the correlation 
function because we are interested in evaluating the distribution functions in 
the hydrodynamic regime, in order to calculate transport coefficients. 
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As we discussed in III and IV, the use of the boundary conditions given 
by Eqs. (16a) and (16b) will ensure the existence of a bona fide virial expan- 
sion for the transport coefficients. 

It is now a straightforward matter to manipulate the right-hand sides of 
Eqs. (14a) and (14b) with the aid of Eqs. (16a) and (16b). Since this manipula- 
tion is the same as the one done for a system with additive forces, m'~'6~ we do 
not repeat it here. We will just quote the final results. To zeroth order in the 
density one obtains from Eqs, (14a) and (16a) that 

s 

Fs(m(xl,..., x,]F1) = Ps(qz,..., q,)~,(xl  ..... xs) 1-~ Fl(x,) (18) 
i = 1  

where 

P,(qt,..., q,) - 1 - g(o~ = 1 - ex - cp,j + { w,j~ (19) 

~ ( x l  .... , x~) = lira e,-~(x~,..., x~) 1-~ el ' (x,)  (20) 
~-~0 ~=l 

and/3 = (kT)-~, k being Boltzmann's constant and T the local temperature. 
As is shown in Section 3, it will be necessary, insofar as t r anspor t  

coefficients to first order in the density are concerned, to obtain only the two- 
body distribution function to first order in the density F2 ~ .  This is found to be 

F2(t)(xl, x2IF1) = g2m(q,, q2)~2(xl, x2)FI(xl)FI(x2) 

f dxa L~'(xl, x2, xa)r~(x~)F,(x2)Fz(xa) (21) + 

where the operator s176 x2, xa) is given by 

s x~, x~) = & e~-*(x~, x~) 

x {(0~a + 02a + g~2~)ra(x~, x2, x~)~a(x~, x2, xa) 

- r~(x~, x~)~(xl, x~)[o~r~(x~, x~)~(x~, x~) 
+ 02ar2(x2, xa)~32(x2, xa)]} (22) 

We will now rewrite the operator s in a more convenient form. For  this 
purpose, we notice that, with the aid of Eq. (2), the streaming operator ~ 
[Eq. (15)] is 

~ = exp{r~3~} = e x p { r ( ~  + A,)} = (e*(a~ ~ - @av o + e~ae, 

= (e~(~.+eX~)e-~ae, _ 1)e~ae~ + e *ae, 

= (~,*S~-' - 1)S,' + S,' (23) 
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where 
Sd = exp{T3~} (24) 

is the streaming operator of a system with .additive forces. Due to the fact 
that [see Eq. (2)] 

~ = ~ ~ --- 1, 2 ( 2 5 )  
w e  have that 

~ d  = Sd ~ = 1,2 (26) 

Therefore, from the definition of~3s, given by Eq. (20), we find that 

where 

and 

~B, = R,6~ + 5~ (27) 

~ = l i m ( ~ S ~  - ~ -  1) (28) 
7,-* oo 

s 

- '  ) 1--i s~(x,) ~9~(x~ ..... x,) = lira S~ (xl .... , x ,  

is the operator corresponding to a system with additive forces. 
From Eq. (19) we can write 

P3 = P3~d + (P~ - ra~a) 
where 

(29) 

(30) 

P3aa = 1 -63aa"~~ _ 1 - e x p  - 9~j (31) 

Further, we notice from Eq. (19) that F2 does not have nonadditive con- 
tributions, i.e., it is the same function as the one corresponding to a system 
with additive forces. Using Eqs. (27) and (30) in Eq. (22), it can be shown in 
a straightforward way that 

~e(xl, x~, x3) = G(x l ,  x~, x3) + ~(x l ,  x2, xs) (32) 

where (93 is the operator for a system with additive forces, and is given by 
Eq. (30) of III. The operator ~ is the contribution to ~ due to nonadditive 
forces, and is given by (o 

& &-~(x~, x~)(o~ + o~) .~(xl, x~, xa) = 

x [ G ~  + (G  - G ~ ) ] ~ ( x ~ ,  x~, x~) 

+ d~- Sa-*(x~, x2)~123[P3R8 + I~3]5~a(x~, x2, xa) (33) 

It should be noted that if there are no contributions due to nonadditive 
forces, then ~ = 0, ~go = (93, and we recover the theory for systems with 
additive forces developed in III and IV. 
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Substituting Eq. (32) into Eq. (21), we obtain 

F2m(xl, x2[F1) = F2m(xl, x2IF1)~a + F2m(xl, x2IF1),~ (34) 

where F2m(xl, x2]F~)~a is the two-body distribution function to first order in 
the density corresponding to a system with additive forces, and is given by 
Eq. (29) of III. F2(l>(x~, x~lF~)~ is the contribution due to nonadditive forces 
to the two-body distribution function to first order in the density, and is 
given by 

F2(l)(xl, x~lF1),~,~ = ( g i n  _ g~a)..9O2(xl, x2)Fl(xl)Fl(x2) 

+ f dxa -~(xl, x2, xa)Fl(xl)F~(x2)Fl(xa) (35) 

Here 62~d"m is the term to first order in the density of the local equilibrium 
pair-correlation function of a system with additive forces. 

Before proceeding to calculate the transport coefficients, we would like 
to turn the attention to a pending problem. It was mentioned in paper II that 
due to the fact that we are dealing with a one-component gas, no diffusion 
should be present. Therefore the vector D(p) defined by Eq. (3.20) of II 
should vanish. It was shown in Appendix B of paper II that in order to prove 
that D(p) = 0, it was enough to demonstrate that the quantities a, k, and j 
defined by Eqs. (B4) and (BS) of II are proportional to the single distribution 
function. It was also mentioned that without a density expansion of the two- 
and three-body distribution functions we had not been able to demonstrate 
this property of a, k, and j. We would like to show now this property of the 
functions a, k, andj .  Since the proof is the same up to first order in the density 
as it is for any order, we proceed to present the proof in general. 

One can obtain, in the same way as was done for F2 (z>, any term in the 
density expansion ofF2 and Fa. It can be shown Cv that F, Cz> (s = 2, 3; l t> 1) 
is of the form 

T = I + S  f r "1- ~ dxs+l""dx, ~r, ~-~ F~(x,), s = 2, 3; l >i 1 (36) 

where r is an operator. Therefore we can write from Eq. (9), with the aid 
of Eqs. (17), (18), and (36), that 

g(...f~) = (I - 2~ ~~ + ~)~ ~ F~(x3 
i=i 

+ n ~ d&+,...dx~ ~:~z Fl(x~), s = 2, 3 (37) 
l = l  r = s + l  i=1 

The functional derivative of F~ taken at point x' and evaluated for the 
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equilibrium distribution function s e is 

2 F j (  .... x'[Fle)Fle(p ') = (1 - 2~ <~ + ~ ) ~  ~-I Fle(P') a(x' - xs) 
i = l  j = l  

+ n t dxs + l""dxr 
l = 1  r = s + l  

2 x ~:~, ~ Fl~(p~) 3(x' - x~), s = 2, 3 (38) 
i=i J=l 

Substituting this expression into Eqs. (B4) and (B5) of paper If, one finds 
that all the quantities a, b, c, d, e, f ,  j, and k are proportional to the single 
distribution function. Therefore we can conclude that D(p) = 0 and for our 
system there is no diffusion. 

In the next section we will obtain the explicit expressions of the transport 
coefficients up to first order in the density. 

3. THE T R A N S P O R T  C O E F F I C I E N T S  

In the last section we obtained the two-body distribution function up to 
first order in the density. With this function we can now proceed to construct 
the kernels of the integral equations for the N, d ,  and ~' functions which 
determine the transport coefficients (see paper II). For this purpose we make 
the following series expansions. 

For the functional W(xl f l  ) that determines the collisional term of the 
kinetic equation [see Eq. (2.7) of paper II] 

and 

and 

~F = 2 nt+2W~z~ (39) 
/ = 0  

(40) 

(41) 

= (1/n)f~B + go + n~l  + ' "  

~ '  = (1/n)dB + ~r + n~r + ... 

N' = (1/n)MB + ~'0 + nMz + "" (42) 

Substituting these expansions into Eqs. (3.32), (3.33), and (3.34) of 
II, and  separating different orders in the density, one finds the following 
results. 

Using Eq. (18) in the definition of the functional given by Eq. (2.7) of II, 
we can write 

~'~ ) = @~~ ~) (43) 



44 E. Braun 

where q~(~ ) is the functional given in Section 4 of paper IV, i.e., is 
the same functional that corresponds to a system with only additive forces. 
Here we have used the relation between the reduced distribution functions 
in phase space F, and in t~ spacef~, namelyf ,  = n~F~. Further, 

Fl~(p) = (2~-m0)- a/2 exp{- (p - mu)2/2mO} (44) 

and the rest of the symbols are defined elsewhere. (~~ 
Thus to zeroth order in the density one finds that there are no effects due 

to nonadditive forces; there are just contributions of binary collisions. To this 
order, NB and ~ are the corresponding functions obtained from the linearized 
Boltzmann equation (see Section 3 of paper IV). Further, one finds that 
~B = 0. The transport coefficients are, to this order, precisely the ones 
obtained for dilute gases. (~) 

To first order in the density one finds 

�89 O~( O) ] 

-- f ~,(O)(x1, x, lFle(q))Fle(pt)(q, __ q)(@,2/2mO _ 3 )  dx' 

+ f ~F'm(x, p'lF~(q))Fl"(p')~'fgB(~' ) dp' 

= f W'c~ p' [F~e(q))F~(p')~'ffo(p ') dp' (45a) 

f w'(l'(x, p' [F~e(q))F~e(p')~"~ dp' 

- (1/0) j" W'c~ x'lF~e(q'))S~ ') dx' 

= - f  W'~~ p' IF~(q))F~(p')~'~ ') dp' (45b) 

In Eq. (45a) BI(O) is the second virial coefficient. 
We do not consider the equation for No, the function which appears in 

the bulk viscosity, because this latter quantity is at least of second order 
in the density. 

For this order in the density we use Eq. (34) in the definition of the 
functional ~F and find that 

(1)  e 'te~(xlF~ ~) 'Fk~(x[F~ ~ + W'~(xlFx ) (46) 

Here ~a~(l~ is the functional to first order in the density for a system with 
additive forces, and is given in paper IV; ~F()2 is the nonadditive contribution, 
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and is given by 

.( dx2 012(~2(1)- g(9~d)~2Fle(x1)Fj'e(x2) dr .f dX2 dX3 W~(xllF1 ~) 
3 

• [o~.~(xl, x~, x.) + C~r~(x~, x~, ~)] t--[ FI(xO (47) 
i=1 

Using Eqs. (43) and (46) in the integral equations (45a) and (45b), one 
finds that the unknown functions fr and ~o can be written as 

~o = (~o)~,, + (fr (48) 

Z]o = (~r + (~r (49) 

where (f~o)~a and (ZZo)~a are the functions corresponding to a system of 
additive forces, and satisfy the integral equations given by Eqs. (24) and (30) 
of paper IV. The nonadditive contributions satisfy the following integral 
equations: 

f ~F'n~)(x, p'IF~e)F~e(p')~'qYB(p ') d~' 

f , ~ ~ ,~ ,  
= dP'(~ p IF~ )s (p)  (~o)n~ alp' (50a) 

and 

f w'~)(x, p'lF~e)Fl~(p')~'~ ') dp' 

= - f  r176 p'lF~gF~e(p')~'~ dp' (50b) 

Substituting the explicit expressions for q5,r and tF~) given by Eqs. (43) 
and (47) into Eqs. (50a) and (50b), one obtains the following integral equa- 
tions for (fr and (do)na : 

dx~ 0~(~"  - g~?~)G(x~, x~)F~(xl)F~"(x~) ~ ~Sr 
i=l 

+ f axe dxa [012~(x~, x2, x3) + ~2aPa(xl, x2, Xa)] 

3 3 
+ I-~ F~(x,) ~ ~ ( ~ )  = CB(~(,~o)=a) (51a) 

i=1 ]=1 
and 

f 2 dx2 012(g2 (1~ - a ~  -- g~aa)~gO2(Xl, x2)Fle(Xl)Fle(x2) ~ "~~162 
i=J. 

- f dx2 dx3 [Oz2~(x~, x2, x~) + ~12aPa(xz, x2, x~)] 

3 3 
x ~ F~e(xO ~ ~~ = CB(~~ 

1=1 /=1 
(51b) 
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The operator CB that appears in Eqs. (51a) and (51b) is the usual linear- 
ized Boltzmann operator which is given, in the usual notation, by (~'a) 

C (h) = f f  d~ d~ i(g, E)Fl~(p2)th(pl ') + h(p2') - h(pl) - h(p2)l (52) 

The function (fr has to satisfy, additionally, the following subsidiary 
condition: 

f ap F~'(p)p~(fr = 0 (53) 

There is no further condition on (~r 
The general expressions for the transport coefficients corresponding to 

a system with nonadditive forces are given in paper II. These expressions 
were obtained without recourse to density expansions. If  we now expand these 
expressions, we find to first order in the density the following results. 

The shear viscosity is [see Eq. (4.15) of paper II] 

(~)(1' = (~)~' + (~)(.~ (54) 

where (~7)(~) is the shear viscosity of an additive system and is given by Eq. 
(38) of paper IV. The contribution of  nonadditive forces is just kinetic, up 
to this order in the density, and is given by 

(~7~)(,~ = - (1/15m) f dp ~aF~(p)(~r (55) 

The coefficient of thermal conductivity is [see Eq. (4.29) of paper II] 

(~ ~(1) (56) 

where (~)(~ is the thermal conductivity of an additive system, and is given 
by Eq. (34) of paper IV, The nonadditive contribution is also of kinetic 
origin, and is expressed as 

= - (1/6m20) f dp ~Fa'(N)(fYo),~ (57) ( a2(.~2 

The coefficient of bulk viscosity vanishes to this order in the density. 
The demonstration of this fact is made using the same arguments as given 
by several authors (see, e.g., Ref. 9) and we do not repeat it here. 

To summarize, we have obtained in this paper the transport coefficients, 
up to first order in the density, of a system interacting with nonadditive 
forces. It was found that to zeroth order in the density only the additive part 
of  the potential plays a role, and we obtain the usual Boltzmann transport 
coefficients. To first order in the density one obtains the result that the 
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t ranspor t  coefficients consist o f  two parts, the t ranspor t  coefficients corre- 
sponding to just  the additive potential,  and a nonaddit ive contr ibut ion o f  
kinetic origin. Therefore in the evaluation o f  the effects o f  triple collisions on 
the t ranspor t  coefficients one has to take into account,  not  only those effects 
due to additive potentials,  (1~ but  also the effects due to the nonaddit ive 
par t  o f  the potential.  These latter effects are given by the expressions for  
(~)(~ and (A~)()d given in Eqs. (55) and (57), respectively. In  for thcoming 
publications we will obtain the explicit value o f  (~)(~12 and (h~)(~ for different 
intermolecular models. 
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